
8 The Delphi Magazine Issue 54

ADO Batch Updates
by Guy Smith-Ferrier

TADODataSet Description TBDEDataSet

Supports([coUpdateBatch]) Are batch updates supported ? N/A

LockType := ltBatchOptimistic Enable cached updates CachedUpdates := True

fgPendingRecords, RecordCount > 0 Determine if updates are pending UpdatesPending

FilterGroup Filter specific kinds of updates UpdateRecordTypes

UpdateBatch Update a batch ApplyUpdates

CancelUpdates, CancelBatch Cancel a batch CancelUpdates

N/A Delete Updates Delta CommitUpdates

CancelBatch(arCurrent) Undo changes to current record RevertRecord

UpdateStatus, RecordStatus Update status of the current record UpdateStatus

N/A Specifies how records are found for
updating

UpdateMode

➤ Table 1

procedure TForm1.DBGrid1DrawColumnCell(Sender: TObject; const Rect: TRect;
DataCol: Integer; Column: TColumn; State: TGridDrawState);

begin
case ADOTable1.UpdateStatus of
usModified : DBGrid1.Canvas.Brush.Color:=clBlue;
usDeleted : DBGrid1.Canvas.Brush.Color:=clRed;
usInserted : DBGrid1.Canvas.Brush.Color:=clGreen;

end;
DBGrid1.DefaultDrawDataCell(Rect, Column.Field, State);

end;

➤ Listing 1

ADO includes an implementa-
tion of batch updates which is

conceptually and somewhat syn-
tactically similar to the BDE’s
implementation of cached updates
and to TClientDataSet. ADO batch
updates and BDE cached updates
share some similarities in terms of
their goals but also some differ-
ences. In particular, ADO batch
updates are a pre-requisite for dis-
connected recordsets, single tier
applications and Remote Data Ser-
vices (ADO’s rough equivalent to
MIDAS). ADOExpress (the ADO
component suite in Delphi 5)
attempts to make the logical and
syntactical transition from cached
updates to batch updates as seam-
less and painless as possible but,
as you can guess from previous
articles on ADO, there is some
re-learning to do. This article looks
at what you need to know to use
ADO batch updates.

Getting Started
At first sight the syntactical con-
version isn’t too dramatic. Table 1
shows the TADODataSet batch
update properties and methods
and their TBDEDataSet counter-
parts.

The essential approach is
quite straightforward: enable a
recordset for batch updates, make
changes to records (updates,
inserts and deletes) and apply the
changes (using TADODataSet.
UpdateBatch).

There are a few differences
worth mentioning. ADO allows you
to determine if the dataset
supports batch updates using:

TADODataSet.Supports(
coUpdateBatch)

Batch updates are enabled by
setting the LockType (see Issue 52)
to ltBatchOptimistic before open-
ing the record set. Hereafter
changes are made to a local mem-
ory-based cache (just as they are
with the BDE’s cached updates).
This step also affects the locking
mechanism. As records are
changed on the client side,
changes are made in memory, thus
no record locking takes place.

When the batch is applied an opti-
mistic locking scheme is used, ie
records are only successfully
updated if they have not been
changed by another user (more
about this later).

There are two ways to cancel
batch updates: CancelUpdates and
CancelBatch. The former is a direct
equivalent to TBDEDataSet.Cancel-
Updates and the latter is the ADO
equivalent, which accepts an
optional parameter indicating
which kind of updates should be
cancelled.

TADODataSet has no equivalent to
TBDEDataSet.CommitUpdates be-
cause the updating of the batch
always deletes the update delta.

The TADODataSet.UpdateStatus
property can be used in exactly the
same way as its BDE counterpart.
Listing 1 shows a TDBGrid’s
OnDrawColumnCell method being
used to colour modified rows

10 The Delphi Magazine Issue 54

fgUnassigned Specifies that no filtering is in effect

fgNone Removes any current filtering and all rows are
visible

fgPendingRecords Shows just the rows that have been changed and
not applied

fgAffectedRecords Shows just the rows affected by the last update

fgFetchedRecords Shows just the rows in the current update cache

fgPredicate Shows just deleted rows

fgConflictingRecords Shows just the rows that could not be applied
due to errors on the apply attempt

➤ Table 2

ADOConnection1.BeginTrans;
try
ADOTable1.UpdateBatch;
ADOConnection1.CommitTrans;

except
ADOConnection1.RollbackTrans;
ShowMessage('Errors occurred.'+#13+'Complete batch rolled back');

end;

➤ Listing 2

either blue, red or green depending
on whether they have been
modified, deleted or inserted.
TBDEDataSet.UpdateRecordTypes is
used to filter a result set to show
unapplied updates of certain
kinds. For example, to show
unapplied deleted and modified
records you could use the
following line:

Table1.UpdateRecordTypes:=
[rtDeleted, rtModified];

TADODataSet’s nearest equivalent is
FilterGroup. However, TADOData-
Set.Filter Group is not a set of enu-
merated values but a single value.
Table 2 shows the possible
TFilterGroup values.

There is certainly a high degree
of similarity between Update-
RecordTypes and FilterGroup, but
each is capable of feats which the
other is not.

Update Conflicts
So far so good, but I have always
found a healthy dose of paranoia to
be an excellent programming qual-
ity and I always want to know what
happens when things don’t work
the way they should. For example,
what happens when two updates
conflict? Well, the answer depends
on the nature of the conflict.

Assume that two users want to
change the same record. One user
wants to change the CONTACTNAME
field and another user wants to
change the CONTACTPHONE field. In
this example, both updates will
succeed. ADO locates the original
record by searching for a record
which matches the original
primary key and the original value
of the changed field(s). This is the
same technique as the BDE uses
when TBDEDataSet.UpdateMode is set
to upWhereChanged. The difference is
that ADO has no facility to allow
the programmer to change this

setting, so you are stuck with
upWhereChanged.

Now assume that two users want
to change the same field of the
same record at the same time.
When the second user updates
their batch they will get the error
‘The specified row could not be
located for updating. Some values
may have been changed since it was
last read’. This is understandable
and the user is left with an
unapplied update.

However, this is not the only
error which the user could receive.
The same problem can result in an
‘Errors occurred’ error. We need to
take a closer look into how ADO
applies the batch update. Assume
that a user makes changes to sev-
eral records. Also assume that
another user successfully updates
one of these records before the
first user applies their update. Now
when the first user applies their
update all of the changes which do
not conflict will be successfully
applied. Only the conflicting
records will not be applied.

This behaviour is different to
that of the BDE. Typically, BDE
cached updates are applied from a
TDatabase object. As a result, the
updates are encased within a
transaction. If any single update
fails then all updates are rolled
back. This is not the case in ADO
batch updates, as TADOConnection

has no UpdateBatch method. How-
ever, the code to enclose the
updates in a transaction is very
simple (Listing 2).

Now to get back to the distinc-
tion between the two error mes-
sages which I talked about a
moment ago. The difference is
caused by the UpdateBatch method
continuing to apply the remaining
updates even after one or more
updates have failed. If all updates
succeed except for the last one,
the reason for failure is reported
accurately (ie you receive the
error ‘The specified row could not
be located for updating. Some
values may have been changed
since it was last read.’). If an error
occurs and it is not the last record
updated or more than one error
occurs then ADO simply reports
‘Errors occurred’.

You can view the sequence of
events using the TCustomADOData-
Set.OnRecordChangeComplete event.
This receives a number of parame-
ters, including the reason for the
event (Reason: TEventReason) and
the status of the event (Event-
Status: TEventStatus).

When a record is first changed
on the client side an OnRecord-
ChangeComplete event is generated
with a reason of erFirstChange,
indicating that this is the first time
the record has been changed since
it was read from the database.
In addition, the event status is
esOk, which indicates that the
record was changed successfully
(on the client side). When the
batch is finally updated (using

12 The Delphi Magazine Issue 54

ADO Field Class Description Delphi TField Class

Value The client’s current value NewValue

UnderlyingValue The new value from the
database

CurValue

OriginalValue The value when first read
from the database

OldValue

➤ Table 3

method UpdateBatch) an OnRecord-
ChangeComplete event is generated
again for each of the updates. For
each update the reason parameter
is erUpdate, indicating that an exist-
ing row was being modified. When
the update fails (because another
user changed the data first) the
event status is esErrorsOccurred,
indicating that the update was not
successfully applied. What is very
useful about this event is that it
enables you to see that even after
one update has failed ADO contin-
ues to keep applying subsequent
updates.

Resolving Conflicts
The standard approach to resolv-
ing batch update conflicts in the
world of ADO is to update the
batch as normal and then, after the
complete batch has been updated
and one or more records in the
batch have failed to update, review
the failed records. To filter the
recordset to show only those
records which failed to be applied
use the following code:

ADOTable1.FilterGroup :=
fgConflictingRecords;

ADOTable1.Filtered := True;

then use the NewValue, CurValue and
OldValue properties of Delphi’s
TField class to allow the user to
review the differences and decide
upon a solution. Table 3 shows
your available options.

You can see from this table the
ADO equivalents to the TField
class properties. One of the prob-
lems which Delphi programmers
using ADO must overcome is that
Borland, quite deliberately, only
documents ADOExpress and not
ADO (or MDAC, OLE DB, ODBC
etc). Although this can be frustrat-
ing for the Delphi programmer
trying to learn ADO, it is the only
realistic approach that Borland
can take. It really doesn’t make
sense to document something all
over again which is already docu-
mented (although it would have
been helpful to include the MDAC
SDK on the Delphi CD). Thus the
reason for including the ADO Field
class equivalents to the Delphi
TField class is that all of the

documentation on ADO talks in
ADO terms and not Delphi terms
(quite reasonable, really).

The Delphi TField properties do,
of course, retrieve their values
from the ADO Field class proper-
ties, so there really isn’t much
difference. However, you should
be aware that all ADOExpress
features are represented using the
familiar Delphi TDataSet architec-
ture. What this means is that
TDataSet descendants can buffer
data. If you bypass the
ADOExpress class and go directly
to the ADO class (eg to get the
UnderlyingValue or OriginalValue
of ADO’s Field class) you will get
the values of the last record read.
This might not be the same as the
ADOExpress class’s current
record. You can either avoid this
problem altogether by not bypass-
ing the ADOExpress class and
going directly to the underlying
ADO class (more preferable) or by
resynchronizing the ADO class
with the Delphi class using
TDataSet.UpdateCursorPos (which
is less preferable).

However, as with all things
in ADO, the specification simply
states how any particular feature is
supposed to work, but the OLE DB
Provider in question may or may
not actually implement the said
feature. This is the case for the
UnderlyingValue/CurValue prop-
erty. The Jet 4.0 OLE DB Provider
(Access 97 and Access 2000)
returns the OriginalValue/
OldValue for UnderlyingValue/
CurValue instead of the value from
the database as set by another user
(the SQL Server OLE DB Provider
returns the correct value for
UnderlyingValue/OldValue).

If you are familiar with
TClientDataSet you may be won-
dering about whether you can
make use of TReconcileErrorFormor

if there is any ADO equivalent. To
recap: TReconcileErrorForm is a
very convenient dialog supplied
with Delphi which is intended for
resolving update conflicts when
using TClientDataSet.Apply-
Updates. TReconcileErrorForm uses
DBClient (and therefore MIDAS)
and DBTables, but with a little
amendment of the uses clause and
a small amount of copying
(TReconcileAction, EDBClient and
EReconcileError) from DBClient
the error reconciliation form can
be made to compile without
TClientDataSet. However, this is a
non-starter, as TCustomADODataSet
does not have the required
OnReconcileError event where
TReconcileErrorForm is used.
Unfortunately, this is a show stop-
per, because the only feedback the
programmer receives during the
process of updating the batch is an
OnRecordChangeComplete event and
the OnRecordChangeComplete event
has no way of reconciling the
error. In short, ADO was not
designed to resolve this problem
this way and, at least for the
moment, it appears the problem
cannot be resolved this way.

Master/Detail Relationships
Master/detail or parent/child rela-
tionships caused their fair share of
problems in the BDE world and, as
batch updates are conceptually
the same as cached updates, this
problem, like many others,
remains the same. In the world of
cached updates the question was
always about in which order the
updates should be applied. The
order could be specified by the
order in which datasets were
passed to the TDatabase.Apply-
Updates method and usually this
meant that updates were applied

February 2000 The Delphi Magazine 13

ADOConnection1.BeginTrans;
try
ADODataSet1.UpdateBatch;
ADODataSet2.UpdateBatch;
ADOConnection1.CommitTrans;

except
ADOConnection1.RollbackTrans;

end;

SHAPE {SELECT * FROM CUSTOMERS}
APPEND ({SELECT * FROM ORDERS}
RELATE CustomerID TO CustomerID) AS ORDERS

➤ Listing 3

➤ Listing 4

to the parent first and then to the
child. When TClientDataSet
replaced cached updates as the
recommended solution to the
problem, the approach to solving
the problem changed. Instead the
parent table on the client side con-
tained the complete set of parent
records plus the complete set of
child records. The TClientDataSet
became a conduit through which
all updates on the client side
passed.

There are two ADO solutions to
the master/detail problem (though
both solutions are very similar)
which have similarities with both
cached updates and TClientData-
Set. The first solution is the most
straightforward and is the same as
for the BDE’s cached updates: start
a transaction, apply updates to
each table individually and commit
the transaction. Listing 3 shows
the code to achieve this.

The second solution is to use the
Microsoft Data Shape Provider
(supplied with ADO 2.0 upwards).
This approach has much more in
common with TClientDataSet. The
Data Shape Provider uses a set of
extensions to SQL to ‘shape’ data.
Listing 4 shows an example of the
data shape language to return a
Customer/Orders master/detail
relationship.

This SQL can be used with a
TADODataSet or a TADOQuery. To get
at the child data you’ll need to add
persistent fields to the dataset.
Then add another TADODataSet and
set its DataSetField property to the
TDataSetField added to the first
data set (eg ADODataSet1ORDERS).

All appears to be well and the
problem happily solved except for
the small detail that the process of
updating the detail dataset isn’t

automatic, as it is when using
TClientDataSet. Instead you have
to update the detail’s batch as well
as the parent’s batch. As a result,
the code to update both the master
and the detail is the same using this
second solution as it was for the
first solution (see Listing 3 again).
Although the Data Shape Provider
is certainly a very useful tool, it
doesn’t solve many problems in
the world of batch updates.

Auto-Incremented Keys
As I have mentioned, many of the
problems which BDE cached
updates face reappear with ADO
batch updates. Auto-incremented
keys, such as Access AutoNumber
and SQL Server Identity fields, are
another example. The problem
here is one of timing. When using
batch updates the underlying data-
base is not updated until the
BatchUpdate method is called. It is
at this point that the database gets
a chance to generate the next
number in the sequence for a
newly inserted record. The prob-
lem is that this may be too late for
the client application if it needs
this information when the record is
added on the client (instead of
updated on the server). ADO batch
updates suffer the same fate as the
BDE’s cached updates, in that your
application simply has to make
allowances for this behaviour.

However, ADO does make some
effort to help in retrieving the
newly auto-incremented values
from the database after the batch
has been updated. You may recall
that ADO has the concept of
‘dynamic properties’ which allow
you to interrogate an object’s fea-
tures. One such dynamic property
is Update resync which determines
how the recordset will be updated
by the database after a batch
update. The all important value
which you are searching for here
is adResyncAutoIncrement (the
default) which specifies that auto-
increment fields of the recordset

will be updated from the database
for newly added records. You can
check this setting using:

if ADOTable1.Properties[
‘Update Resync’] =
adResyncAutoIncrement then
Caption:=’Resync ‘+
‘Auto-Incremented fields’;

Of course, if you’re ahead of the
game, by now you should be guess-
ing that this is simply how it is sup-
posed to work and not necessarily
that it will always work this way
with all providers. In fact, it is
really quite awkward trying to
work out whether this feature will
work or not, because it is depend-
ent on the combination of OLE DB
Provider, database engine, data-
base format version number,
whether the data source is
indexed, whether the cursor loca-
tion is client-side or server-side,
the cursor type and the lock type.
For example, the Jet 4.0 OLE DB
Provider will not automatically
resync auto-incremented fields
when used with Access 97 and a
client-side cursor, but it will (in
nearly all cases) when used with
Access 2000. If you use Access 97
and auto-incremented fields then
after you have added a new record
with an AutoNumber field,
updated the batch and refreshed
the data, you will receive the error
‘The value for this row has been
changed or deleted at the data
source. The local row is now
deleted’. This is because the server
has changed the primary key but
the client is unaware of the change.
The client can no longer find the
local record which it has on the
server.

Updating
Read-Only Result Sets
One of the benefits touted for BDE
cached updates is the ability to
update result sets which are read
only by nature. Typically this
means a JOIN between two tables
but cached updates are not limited
just to updating simple JOINs. The
process involves making use of a
TUpdateSQL component and the
judicious clicking of a couple of
buttons to generate the necessary

14 The Delphi Magazine Issue 54

// Disconnect recordset
// from the Connection
ADOTable1.Connection := nil;
// Drop connection to database
ADOConnection1.Connected := False;

// Connect to the database
ADOConnection1.Connected:=True;
// Connect recordset to Connection
ADOTable1.Connection :=
ADOConnection1;

➤ Listing 5

SQL to resolve the ambiguity of
updating a result set which refers
to more than one table. In terms of
solving the problem, cached
updates score 10 out of 10. How-
ever, the mechanism it uses is not
wholly intuitive and it is rather
fragile in the face of changes to the
database structure, as the SQL
needs to be regenerated each time
the database structure changes.

ADO’s solution to this problem is
simple: there is no problem. ADO
joins are naturally updateable
(both sides of the join are
updateable) without the need to
resort to any other components or
setting any properties at all. In
terms of solving the problem it gets
a 7 out of 10, and in terms of the
solution’s elegance it gets a 10 out
of 10. I only gave it a 7 for solving
the problem for two reasons.
Firstly, although updating the
result set is simple, inserting and
deleting rows in the result set is
more problematical. Secondly, it
only gets a 7 because having
manual control over the updating
process gives you the potential to
handle other, less common, situa-
tions which ADO batch updates
cannot handle. For example, take
an SQL statement which contains a
GROUP BY clause. This is a read-only
result set, because each logical
row refers to many physical rows
in a table or view somewhere. With
cached updates you could say that
an update to a logical row should
be applied to all of the correspond-
ing physical rows.

Disconnected Recordsets
One of the main goals behind
ADO’s batch updates is to allow
programmers to disconnect
recordsets. This leads to other fea-
tures, like recordset persistence
(ie the briefcase model) and N-tier
applications using RDS. A discon-
nected recordset is one which has
been disconnected from the data-
base and is operating independ-
ently from the database. The most
important point here is that the
connection to the database has
been dropped. This allows the
client to get on with the job of com-
municating with the user and let-
ting the user modify, insert and

delete data without tying up a con-
nection to the database. ADO
excels in this subject, as the ADO
RecordSet class was designed with
this goal in mind. Disconnecting
from the database is simple and
can be seen in Listing 5, reconnect-
ing is shown in Listing 6.

ADO’s solution is exceptionally
elegant because the recordset con-
tinues to function in the same
manner when disconnected as
when connected. There is no com-
parison with BDE cached updates
because the connection cannot be
dropped but even if you contrast
this with TClientDataSet, which
does allow the connection to be
dropped, ADO is still a more ele-
gant solution because you are not
forced to change dataset compo-
nents (ie from TTable/TQuery to
TClientDataSet).

Conclusion
ADO’s implementation of batch
updates is well thought out and
offers similar functionality to that
of the BDE’s cached updates and
also of TClientDataSet. In addition,
it can be seen as a pre-requisite for
other ADO features such as

disconnected recordsets, record-
set persistence and RDS. However,
as always with ADO you should
take great care to determine that
the OLE DB Provider you are using
supports the features you want to
use. I’ll be back soon with more
help for your ADO projects; mean-
while, have fun!

Guy Smith-Ferrier is Technical
Director of Enterprise Logistics
Ltd (www.EnterpriseL.com), a
training company specialising in
Delphi which is now running ADO
courses. He can be contacted at
gsmithferrier@EnterpriseL.com

➤ Listing 6

	Getting Started
	Update Conflicts
	Resolving Conflicts
	Borland, quite deliberately, only
	Auto-Incremented Keys
	Updating Read-Only Result Sets
	Disconnected Recordsets
	Conclusion

